
Windows Registry Forensics: An Imperative Step
in Tracking Data Theft via USB Devices

Tanushree Roy, Aruna Jain

Department of I.T.
Birla Institute of Technology, Mesra, Ranchi, India

Abstract— Owing to the increasing pace of occurrence of
crimes in digital world, cyber forensic investigation is
becoming a burning topic in the field of information security.
Registry is an important location in Windows system that
contains footprints of user activities and other configuration
data, which may be valuable for forensic investigators in
collecting potential evidences from the system. This work aims
to point out the significance of Registry Analysis, and attempts
to answer why it should be carried as a part of digital forensic
investigation by demonstrating the role played by Registry in
tracking data theft from system to USB external devices.

Keywords— Forensics Analysis, Registry Analysis, Tracking

Data Theft, USB footprints, Windows Forensics.

I. INTRODUCTION
In the recent years, with the development of Information

and Communication Technology (ICT) and rise in Internet
usage, society’s dependence upon computers is increasing
rapidly. With this growth of technology, the world is also
seeing a substantial rise in the abuse of various kinds
conducted with, through or by technology. According to the
Norton Cyber Crime report-2011 by Symantec Corporation
[9], about 1 million cyber crimes are occurring every day
across the globe. According to the report, the total number
of victims in India is 29.9 million, which is approx. 80% of
the online adults. The reason for this increasing abuse is
attributed to the still-to-be-mature existing security
procedures and the reluctance persistent among users in
employing security methods as an integral part of the whole
system.

As a result, cyber crimes are increasing and, cyber
criminals are growing in sophistication as technology acts
as a boon for them too. Thus, it becomes exceptionally
critical for the law enforcement officers and incident
responders to understand computer systems and be able to
examine them effectively and efficiently.

Cyber forensics is the branch of science that acts as a
tool for the investigators for investigating a computer
system or network alleged of being involved in criminal
activity and, gathering artifacts that may be used as
evidence in the case and presented in the court of law.

Due to its effective GUI and ease of use, Microsoft
Windows is one of the most popular operating system and,
is; unfortunately the most attacked one too. As windows
source code is unavailable, forensic analysis of windows
systems becomes a challenging task for the investigators.

Registry is one of the areas in a Windows system where
evidences can be found. This work aims to point out the
importance of Registry Analysis process carried in
Windows Systems as a part of digital forensic investigation
in today’s scenario. An offline registry parser developed as

a part of this work will be used to generate registry keys
from registry hives, extracted from the hard disk as a part of
postmortem analysis.

In this Information age, ownership of intellectual
property is very precious and prized. Theft of intellectual
property is one of major issues of concern, which can
become a trouble not only for an individual, but for a whole
organization. USB ports, as well as other ports that permits
one to attach a removable storage device, can act as a
promising means to steal classified information. Any user
with a removable USB drive can attach the device to the
system and copy critical information.

In this paper we have discussed how by means of a
careful investigation of the Registry files, data transfer to
USB devices be identified. We begin by stating the work
done by various researchers in section 2, and explain the
structure of the Windows Registry and how Registry tree
structure is parsed from the hive file in an offline mode in
section 3. In section 4 we will briefly discuss the footprints
left on the system and Registry when a USB device is
connected. We finally show how to proceed in a case
involving data transfer from system to USB through
Registry analysis.

II. RELATED WORK

During the past years, it has turn out to be absolutely
lucid that Registry in Windows systems contains ample
amount of information for the use of incident responders
and forensic analysts alike. A great deal of information on
how to interpret various Registry data and settings have
been provided by Carvey [1], Wong [13] and Farmer [4].
As illustrated by Carvey, “Registry data consists of a wealth
of information that the investigator can make use of to
make up his case”. Kim, et. al. [6] has listed some registry
keys that an investigator must check during an
investigation. Chang, et. al. [2] has shown how to proceed
in an investigation involving Windows systems, and listed
some of the registry areas that need attention in the
preliminary stages. Additional areas vital from a forensic
viewpoint apart from Registry in Windows systems have
been noted by Dashora, et. al. [3], such as event logs, RAM,
Pagefile, slack space, etc.

Manchanda, et. al. [7] have illustrated how the last-write
times associated with every Registry key can be useful in
generating a forensic timeline of the events that has
occurred in a system.

Documentation regarding the Registry internal structure
has been provided in detail by Russinovich [10]. Morgan
[8] provided a comprehensive description of the Registry’s
internal data structures and format that is helpful in
generating the registry tree from hive files.

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4427

III. METHODOLOGY
A. The Windows Registry

Windows Registry is the “central hierarchical database”
used to store information that is necessary to configure the
system for one or more users, applications, and hardware
devices [11]. It is the Heart and soul of Windows operating
system; every application that runs on Microsoft’s
operating systems do absolutely nothing without consulting
the Registry first. When we double-click over a file,
Windows consults the Registry to figure out what to do
with that file. When a new device is connected to the
system, Windows assigns resources to the device based on
information in the Registry and then stores the device’s
configuration in the Registry.

1) Registry Structure Overview: The Registry is
organized in a tree like structure which is equivalent to the
filesystem. For e.g., the keys and subkeys found within the
five main hives are comparable to folders and subfolders of
Windows filesystem, and a key’s value is similar to a file
inside a folder, a value’s name is analogous to a filename,
its type resembles a file extension, and its data is like to the
actual contents of a file. The registry structure is illustrated
in figure 3.1.

The registry value contains 3 parts; value name, value
type and value data; as illustrated in figure 3.2.

Figure 3.1: Registry Logical Structure as displayed by the Registry Editor

regedit.

Figure 3.2: Value Fields

Physically, the Registry isn’t simply one large file but
rather a set of discrete files called hives. Each hive contains

a Registry tree that has a key serving as the root or initial
point of the tree. Subkeys and their values are below the
root. Table 1 below lists the Registry hives and their on-
disk location for a Windows XP system. The path names of
all hives excluding for user profiles are coded into the
configuration manager.

Registry Hive

Path
Hive file path

HKLM\SAM %SystemRoot%\System32\Config\sam

HKLM\
SECURITY

%SystemRoot%\System32\Config\security

HKLM\
SOFTWARE

%SystemRoot%\System32\Config\software

HKLM\
SYSTEM

%SystemRoot%\System32\Config\system

HKLM\
HARDWARE

volatile hive

HKU\.Default %SystemRoot%\System32\Config\Default

HKU\<SID of
local service
account>

\Documents andSettings\%UserProfile%
\LocalService\Ntuser.dat

HKU\<SID of
network service
account>

\Documents andSettings\%UserProfile%
\NetworkService\Ntuser.dat

HKU\<SID of
username>

\Documents andSettings\%UserProfile%
\Ntuser.dat

HKU\<SID of
username>_Cla
sses

\DocumentsandSettings\%UserProfile%
\LocalSettings\ApplicationData\Microsoft\Wind
ows\UsrClass.dat

Table 1: Registry hive file locations

2) Registry hive structure: A hive is logically divided
into allocation units called blocks as disk is divided into
clusters. Typically a block is of size 4096 bytes (4 KB). The
initial block of a hive is the base block. Remaining blocks
contains bins, which contain cells.

BASE
BLOCK

regf
BLOCK

cells

BIN
hbin

BLOCK
cells

BIN

hbin
BLOCK

cells BLOCK

BLOCK

BIN
hbin

BLOCK
cells

Figure 3.3: Simplified illustration of Registry hive internal structure.

The base block contains global information about the
hive, together with a signature—regf, that classifies the file
as a hive, sequence numbers, time-stamp that indicates the
last time a write operation commenced on the hive, the hive
format version number, checksum value, and the hive file’s
internal file name (for eg., \Device\Harddisk-
Volume1\WINDOWS\SYSTEM32\CONFIG\SAM).

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4428

Offset Size Contents
0x0000 4 “regf” signature
0x000c 8 timestamp
0x0024 4 root key offset
0x0028 4 offset to last hbin in the hive
0x0030 64 file name (Unicode)

*(size in bytes)
Table 2: Important fields of base block

Windows organizes the Registry data that a hive stores
in containers called cells. A cell can contain a key, a list of
subkeys, a value, a security descriptor, or a list of key
values. A field at the beginning of a cell’s data describes the
data’s type. Bins also have headers that have a signature,
hbin, a field that contains offset to the hive file of the bin
and the bin’s size.

Cell Types Signature
Key cell nk 0x6B6E
Value cell vk 0x6B76
Security Descriptor cell sk 0x6B73

Sub-key list cell lf / lh / ri / li
0x666C / 0x686C /
0x6792 / 0x696C

Value-list cell – N/A (No header)
Data cell – N/A (No header)

Table 3: Cell types and their signatures

3) Traversing the Registry Hive: The base block points
to the first hbin structure that in turn comprise the offset to
the root key of the registry hive. All key/subkey in the
registry hive is having a signature NK. Key cell include an
offset to the value-list member containing the values
present under the keys and an offset to the related sub-key
structure that point to an LH, an LF or an RI cell.

The LH or LF entry includes a member that holds a list
of offsets to all the other sub-keys of the key. The value-list
contains pointers to value keys. The value entry contains
information related to the value present under a key and the
associated data. If the data size contains a 1 in its MSB
(0x80), the key contains inline data, i.e. – the offset to the
data is the actual data rather than an offset to the data. In
case of non-inline data, the offset to the data is the offset of
the data cell. In case the first two bytes of the data cell
contain the signature ‘db’ (0x6264), it is a data cell with
non-contiguous data. This may be because the size of the
data is very large, and cannot be accommodated in a single
bin. The data is then spread over a number of bins. The next
two bytes then tell us how many bins the data is spread
over. Following these two bytes is a list of offsets to the
data cells that make up this data entry. The data from all
these cells can be concatenated to form the actual data of
that particular value.
B. Tools Used

1) Collection of Registry hive files: Registry files are
opened by the Kernel in restricted mode which means that
they cannot be copied while the system is in use, except for
the User Registry Files (NTUSER.DAT) that are not
currently loaded.

A method was needed for extracting example Registry
Files for research use. The chosen method was:

i. Hive files are collected from several machines by
booting them from a Linux disc (as hive files are
locked while the Windows operating system is
running).

ii. ERUNT tool also may be used to obtain hive files
from a live system, without shutting-down the
system.

It is noted that, a collection method like listed above can
capture only the stable hives present in the hard-disk, and
not the volatile hives (the in-memory version of disk hives).
2) Registry Examination: Analysis of the registry hive files
can be done manually using WinHex [12] or by parsing the
hive using an offline parser. For the purpose of examination
an offline registry parser r_parser.pl was developed in
Perl based upon the available knowledge about the Registry
structure. The code was further modified to generate
specific keys related to USB devices, as explained in the
following section. Another utility regkey_time.pl was
developed, that listed the keys in a descending order of their
last-write times.

C. Footprints left by a USB Device

1) setupapi.log: Since almost all devices now-a-days,
are of the type “plug-and-play”, containing their associated
driver files written on the device firmware, the system can
install them directly, ruling out need for a separate
installation disk. Whenever such Plug-and-Play USB
device is connected to a system, Plug-and-Play (PnP)
manager receives this event and queries the device
description in its firmware, such as manufacturer, serial no,
etc. Upon receiving the information, the PnP manager
locates device drivers and a set of Registry keys are created,
as described below. Above events are recorded in
setupapi.log file present in %Windowsdir%
(C:\Windows\setupappi.log) when the device gets
connected to the system for the first time.

The device detail is not a part of memory area and thus,
is not available when we make its clone.

2) Registry Keys created: After the device is identified, a
set of registry keys gets created as follows:

i. HKEY_LOCAL_MACHINE\SYSTEM\ControlSet00
x\Enum\USBSTOR\<device_class>\<device_
unique_id>\

ii. HKEY_LOCAL_MACHINE\SYSTEM\ControlSet00
x\Control\DeviceClasses\{<disk_devices
_GUID>}\

iii. <device_class#device_unique_id#{disk_d
evicesGUID}>\

iv. HKEY_LOCAL_MACHINE\SYSTEM\ControlSet00
x\Control\DeviceClasses\{<volume_devic
es_GUID>}\

v. <STORAGE_RemovableMedia#ParentId_Prefi
x#{volume_devices_GUID}>\

vi. HKEY_LOCAL_MACHINE\SYSTEM\ControlSet00
x\Enum\Storage\RemovableMedia\<ParentI
D_Prefix>\

These keys contain details about the device id, driver
description, manufacturer, friendly name, parented prefix,
etc. When we connect the same USB to the system again, a
sub-key named control is created under the above keys. As
a result the time-stamp of these keys reflect the last time the
USB was connected to the system.

3) Drive letter to which the device gets mounted: USB
device when connected to the system gets assigned to a
drive letter (G, H, etc.), which can be identified through the
following key:
HKEY_LOCAL_MACHINE\SYSTEM\MountedDevices

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4429

This key contains a value starting with \??\Volume\
that contains binary data having ParentId_Prefix in the form
<STORAGE_RemovableMedia#ParentId_Prefix#
{volume_devices_GUID}>. This data is also present
in the value \DosDevices\<drive_letter>, if this
USB device was the last device mapped to that drive letter.

4) Finding the user profile through which USB device
was connected: The value present in the key
\MountedDevices starting with \??\Volume\{…}
occurs only once more in the ntuser.dat hive of the user
profile in which the USB device was connected. Using this
value, we can find out the user profile through which the
USB device was connected.

5) Time the drive was last connected to the system: The
first time USB device was connected to a system is found
from the setupapi.log file and the corresponding registry
entries. To associate this time with the actual time, the
Registry key SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Time Zones, present in the
Software hive is checked.

6) To track if file opened or copied through explorer: If
any file is opened through the explorer by double click on
the file name, an entry is created in the Registry key:
\Software\Microsoft\Windows\CurrentVersi
on\Explorer\RecentDocs\

If file opened using open file menu or saved using save-
as file menu in any application program, it is noted in the
registry key
\Software\Microsoft\Windows\CurrentVersi
on\Explorer\ComDlg32\OpenSaveMRU
\Software\Microsoft\Windows\CurrentVersi
on\Explorer\ComDlg32\OpenSaveMRU

These entries are present in the ntuser.dat registry hive
of the user profile identified in 4) above.

7) File copy to USB through other modes: Analysis of
the file MAC times: If file is transferred to USB using the
copy, cut or send-to context menu option, no registry entry
gets created; and one has to examine both the system and
USB device file system to track the file copy.

Whenever a file is accessed (i.e., copy, move, open or
edit), their MAC (modified, accessed, created) times gets
updated. However if the Registry value
NtfsDisableLastAccessUpdate present in the
System hive under the key ControlSet00x\
Control\FileSystem\ is enabled, then MAC times
are not updated. By default this value is not present in
Windows XP systems. The MAC times of the files
suspected of being copied is checked.

8) Analysis of the USB device: Once we have identified
the user profile through which the USB device was
connected, and it is established that files have been copied
to the USB, case can be established against that person, and
his USB device is confiscated for analysis. If the copied
files are present in the USB device then, their md5 hash
values are compared to the values of original files. And if
files are not present, then unallocated space is analyzed and
files are recovered, if not overwritten till now.

For tracking data transfer from system to USB devices
evaluating the performance we connected some USB
devices to a system for the first time and copied a few files
from system to USB using different modes. To be able to

the compare the changes, we took a snapshot of MAC
times, before and after files were copied from the system.
Table 4 below shows the operations performed on the files
and the files’ original MAC times. Thereafter, the Registry
files of the system were extracted and analyzed using
r_parse.pl. The analysis process is discussed step by
step in section 4 for an USB device.

File name
Date

Modified Date Created
Date

Accessed
Operation
Performed

Feather
Texture.bmp

2/28/2006
2:00 AM

2/28/2006
2:00 AM

12/13/2011
9:21 PM

Copy > Paste

Gone
Fishing.bmp

2/28/2006
2:00 AM

2/28/2006
2:00 AM

12/13/2011
9:21 PM

Send-to
Option

Green
Stone.bmp

2/28/2006
2:00 AM

2/28/2006
2:00 AM

12/13/2011
9:21 PM

Move
(Cut >Paste)

ie7beta2.log 11/21/2011
4:47 PM

11/21/2011
4:43 PM

11/21/2011
4:47 PM

Rename

ii6.log 11/21/2011
5:54 PM

4/25/2006
6:00 PM

11/21/2011
5:54 PM

Edit

ie7.log 11/21/2011
5:54 PM

11/21/2011
5:52 PM

11/21/2011
5:54 PM

Open
(double click)

Prairie
Wind.bmp

2/28/2006
2:00 AM

2/28/2006
2:00 AM

12/13/2011
9:21 PM

Save through
Save-As

River
Sumida.bmp

2/28/2006
2:00 AM

2/28/2006
2:00 AM

12/13/2011
9:21 PM

Open through
explorer

Table 4: Files’ original MAC times and operations performed on them

For the sake of simplicity, this work we have assumed

that the system fingerprints were not removed deliberately
by the user, and are present within the registry and other
locations.

IV. RESULTS AND DISCUSSIONS

The result of the systematic analysis for one USB device
is follows:
A. setupapi.log file

The setupapi.log file is analyzed to find the entries
related to driver installations for the USB device when
connected to the system for the first time. The figure 4.1
below shows the entries created for the USB device in
question. The device unique instance-id, ParentId prefix
and the time-stamp values are highlighted.

Figure 4.1 (a): Entries of setupapi.log for a “SanDisk Cruzer Blade” USB

drive with 4GB capacity was connected to the system for the first time.

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4430

Figure 4.1 (b): Entries of setupapi.log for a “SanDisk Cruzer Blade” USB

drive with 4GB capacity was connected to the system for the first time

B. Registry entries in SYSTEM and ntuser.dat hive

The registry keys retrieved for the device from the
System hive using our parser is shown in figure 4.2.

Figure 4.2 (a): Registry values for the USB device in question.

Figure 4.2 (b): Registry values for the USB device in question.

C. Finding the drive the USB was mounted
The above USB was mapped to E: drive and we got the

values as below.

D. Finding the user profile through which USB device was
connected

\??\Volume{20275d31-9619-11e1-abc8-
0016e693df12} was found in the ntuser.dat hive of the
user 1. This means the system user 1 must have connected
the USB to the system.

E. Time the drive was last connected to the system

The time USB device was first connected to a system
can be found from the setupapi.log file and the
corresponding entries in the Registry shows the last time
the USB device was connected to the system. To associate
this time with the actual time, the Registry key
SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Time Zones, present in the Software
hive is checked.

F. Find if files were opened or copied to USB

We look for entries corresponding to the USB drive
letter in the ntuser.dat hive of the identified user (if not
deleted explicitly) under the following keys (see figure 4.3,
4.4.):
Software\Microsoft\Windows\CurrentVersio
n\Explorer\RecentDocs.
Software\Microsoft\Windows\CurrentVersio
n\Explorer\ComDlg32\OpenSaveMRU
Software\Microsoft\Windows\CurrentVersio
n\Explorer\ComDlg32\LastVisitedMRU

Figure 4.3: An excerpt of the result showing values of RecentDocs

Registry key of the identified user.

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4431

Figure 4.4: An excerpt of the result showing values of OpenSaveMRU

Registry key of the identified user.

From the figure 4.4, it is evident that the files Prairie
Wind.bmp was opened from the system (C:\) then saved to
USB (E:\) while River Sumida.bmp was opened only. This
fact is derived from the entry in OpenSaveMRU. Also the
files ie7.log and ii6.log was accessed through explorer,
found from entry in RecentDocs (figure 4.3). However, the
files that were copied or moved to USB using the context
menu option, has no entry is made in the Registry.
G. Analysis of the file MAC times

When we access (i.e., copy, move, open or edit) a file,
their MAC (modified, accessed, created) times gets
updated. The MAC times of the files suspected of being
copied is checked and compared to the time obtained
through Registry analysis. It was observed from MAC
times of files in the system that, access times are changed
for the files in question and is same as the time the USB
device was connected. Hence, it can be concluded that these
files were copied.

File name
Operation
Performed

Date
Modified

Date
Created

Date
Accessed

Feather
Texture.bmp

Copy >
Paste

No
change

No
change

5/4/2012
11:50 AM

Gone
Fishing.bmp

Send-to
Option

No
change

No
change

5/4/2012
11:55 AM

Green
Stone.bmp

Move
(Cut

>Paste)
File Not found

ie7beta2.log Rename
No

change
No

change
5/4/2012

11:55 AM

ii6.log Edit
No

change
No

change
5/4/2012

11:56 AM

ie7.log
Open(doub

le click)
No

change
No

change
5/4/2012

11:55 AM

Prairie
Wind.bmp

Save
through
Save-As

No
change

No
change

5/4/2012
11:59 AM

River
Sumida.bmp

Open
through
explorer

No
change

No
change

5/4/2012
12:01 AM

Table 5: Change in MAC times of files present in the system.

H. Analysis of the confiscated USB device
Upon knowing the user profile through which the USB

device was connected, a case may be build up against the
owner of that profile. After confiscating the USB device
from that person, a thorough analysis of device’s file
system is done to find the copied files. We found the files in
the USB device and their MAC times were compared to the
original files.

Operation
Performed

Date
Modified

Date
Created

Date Accessed

Copy >
Paste

Same as
old

New, time
of copy

Same as date
Created

Send-to
Option

Same as
old

New, time
of copy

Same as date
Created

Move (Cut
>Paste)

Same as
old

Same as
Old

New, time of
move

Rename
Same as
old

New, time
of copy

Same as date
Created

Edit
Time
Modified

New, time
of copy

Same as date time
Modified

Open
(double
click)

Same as
old

New, time
of copy

Access Time

Save
through
Save-As

New, time
of save

New, time
of save

New, time of
save

Open
through
explorer

Same as
old

New, time
of copy

Same as date
Created

Table 6: Comparison of MAC times of files found in USB with the
original files present in the system.

Hence, from setupapi.log file, we found the time the
USB device (Unique ID- 200402033009D8D25377&0,
ParentID Prefix- 7&251e0f1a&0) was connected to the
system. The last write times of the corresponding registry
keys matched this time. This device was mapped to E: drive
and has been connected to the system by User 1. The entries
in RecentDocs and OpenSaveMRU key establish the fact
that those files were saved E: drive. Finally by analyzing
the MAC times of files, details of files copied is found.

The table 7 below summarizes the steps followed in
investigating this case and table 8 lists how to track the
specific file transfers.

Sl.
No.

Action Performed
Subject of
Analysis

1 Capture registry files from the system –

2
Find the time the USB device was connected
to the system

registry hive
SYSTEM

3
Check the first time the USB device was
connected

Setupapi.log

4
Find the drive letter to which the device was
mounted, match with the time obtained in
step 2 and step 3

registry hive
SYSTEM

5
Find through which user profile the USB
drive was connected to the system

registry hive
ntuser.dat

6
Find if files were opened or saved through
explorer, match path with the drive letter
obtained in step 4

registry hive
ntuser.dat

7

Find if the value
NtfsDisableLastAccessUpdate
is enabled; MAC time of files are checked if
value is set to 1

registry hive
SYSTEM

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4432

Sl.
No.

Action Performed
Subject of
Analysis

8 Find if files were copied by other modes
MAC time of
files present
in the system

9 Check for deleted files in the system
Unallocated
space of the

system

10
Once it is established that files were copied, case is build up
against the person using that identified user profile and his
USB device is confiscated for analysis

11
Check for files in USB device, if found
compare with original file

MAC time of
files in USB

12
If files not found in the USB device, look in
deleted space

Unallocated
space of USB

device

13
Establish file copy by comparing the hash values of original
files present in the system and files obtained from the USB

Table 7: Steps followed in examining file copy to an USB.

Operation
Performed

Tracking Method / Footprint Present In

Copy > Paste
File System analysis of system and USB,

MAC times compared

Send-to Option
File System analysis of system and USB,

MAC times compared
Move (Cut

>Paste)
File System analysis of system and USB,

MAC times compared

Rename
File System analysis of system and USB,

MAC times compared
Edit RecentDocs Registry key

Open(double
click)

RecentDocs Registry key

Save through
Save-As

RecentDocs Registry key

Open through
explorer

OpenSaveMRU Registry key

Table 8: Tracking specific file transfers

V. CONCLUSION AND FUTURE SCOPE

Forensic investigations play a significant role in today's
working and legal environments, and thus it should be
carefully considered. The evidence provided in the registry
is the most significant source of any investigation. The
actions performed on the computer gives the examiner an
insight of the system. Thus, a careful analysis of the
Windows system Registry from a forensic point of view is
the need of the hour and a hot area of research in the present
scenario.

This paper has gathered and verified the existing
knowledge about the registry hive files. We also attempted
to exhibit the importance of registry analysis by
demonstrating how it can help an investigator to progress in
a case of tracking data transfer from a system to a USB
external device. This work is focused on the examination
and generation of registry keys of Windows XP systems
only, and can be extended further for the examination of
registry files in Windows Vista, Windows 7 and other later
versions.

Hence, through the above study it is revealed that
through the detailed analysis of the registry hive files,
activities of a system user can be traced. Hence registry
analysis should be carried as an integral part of digital
forensic investigation process.

REFERENCES
[1] Carvey, H., The Windows registry as a forensic resource, Digital

Investigation, vol. 2(3), pp. 201–205, Elsevier 2005.
[2] Chang, K., Kim, G., Kim, K. and Kim, W., Initial Case Analysis

Using Windows Registry in Computer Forensics, Future Generation
Communication and Networking, Volume 1, 6-8 Dec. 2007
Page(s):564 – 569. [Online] DOI: 10.1109/FGCN.2007.151
[Accessed 02/11/2011].

[3] Dashora, K., Tomar, D. S. and Rana, J. L., A Practical Approach for
Evidence Gathering in Windows Environment, International Journal
of Computer Applications, Volume 5(10), August 2010.

[4] Farmer, D. J., A Forensic Analysis of Windows Registry, Available
online from http://forensicfocus.com/downloads/windows-registry-
quick-reference.pdf, 2007.

[5] Farmer, D. J., A Windows Registry Quick Reference: for the
Everyday Examiner, Available online from
http://eptuners.com/forensics/contents/A_Forensic_Examina
tion_of_the_Windows_Registry.pdf, 2009.

[6] Kim, Y. and Hong, D., Windows Registry and Hiding Suspects’
Secret in Registry, In the Proceedings of the 2008 International
Conference on Information Security and Assurance, IEEE 2008.

[7] Manchanda, M., Manchanda, V., Gupta, V., Bisht, M., Forensic
Investigation of Window Registry, International Transactions in
Applied Sciences, Volume 2(1), pp. 11-21, January 2010.

[8] Morgan, T., D., The Windows NT Registry File Format (Version-
0.4), Available online from
http://www.sentinelchicken.com/data/TheWindowsNTRegistryFileF
ormat.pdf, June 2009.

[9] Norton Cyber Crime report, 2011, Symantec Corporation, Available
online from
http://us.norton.com/content/en/us/home_homeoffice/html/cybercri
mereport/, [accessed April 2012].

[10] Russinovich, M. E. and Solomon, D. A., Management Mechanisms
in Windows Internals Covering Windows Server 2008 and Windows
Vista, (Fifth Edition), Microsoft Press, 2009.

[11] Windows Registry information for advanced users, Microsoft
Support, Available online from
http://support.microsoft.com/kb/256986, [accessed April 2012].

[12] WinHex, , WinHex: Computer Forensics & Data Recovery Software,
Hex Editor & Disk Editor, Available online from http://www.x-
ways.net/winhex/

[13] Wong, L. W., Forensic Analysis of the Windows Registry. Forensic
Focus. Available online from
http://www.forensicfocus.com/index.php?name=
Content&pid=73&page=1, 2007.

Tanushree Roy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4427- 4433

4433

